آزمون بر اساس کتاب «Spiral Dynamics:
Mastering Values, Leadership, and
Change» (ISBN-13: 978-1405133562)
حامی

Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) اقدامات شرکت ها در رابطه با پرسنل در ماه گذشته (بله / خیر)

2) اقدامات شرکت ها در رابطه با پرسنل در ماه گذشته (واقعیت در٪)

3) ترس

4) بزرگترین مشکلات پیش روی کشور من

5) رهبران خوب هنگام ساختن تیم های موفق از چه خصوصیات و توانایی هایی استفاده می کنند؟

6) گوگل. عواملی که بر اثربخشی تیم تأثیر می گذارد

7) اولویت های اصلی افراد متقاضی کار

8) چه چیزی رئیس را به یک رهبر بزرگ تبدیل می کند؟

9) چه چیزی باعث موفقیت افراد در کار می شود؟

10) آیا شما آماده دریافت دستمزد کمتری برای کار از راه دور هستید؟

11) آیا سن گرایی وجود دارد؟

12) سن گرایی در حرفه

13) سن گرایی در زندگی

14) علل سن گرایی

15) دلایلی که مردم تسلیم می شوند (توسط آنا ویتال)

16) اعتماد (#WVS)

17) بررسی خوشبختی آکسفورد

18) سلامت روانی

19) جالب ترین فرصت بعدی شما کجا خواهد بود؟

20) در این هفته چه کاری انجام خواهید داد تا از سلامت روانی خود مراقبت کنید؟

21) من زندگی می کنم در مورد گذشته ، حال یا آینده ام

22) شایسته سالاری

23) هوش مصنوعی و پایان تمدن

24) چرا مردم به تعویق می افتند؟

25) تفاوت جنسیتی در ایجاد اعتماد به نفس (IFD Allensbach)

26) ارزیابی فرهنگ Xing.com

27) پنج اختلال عملکرد یک تیم پاتریک لنسیونی

28) همدلی است ...

29) چه چیزی برای متخصصان فناوری اطلاعات در انتخاب پیشنهاد شغلی ضروری است؟

30) چرا مردم در برابر تغییر مقاومت می کنند (توسط Siobhán Mchale)

31) چگونه احساسات خود را تنظیم می کنید؟ (توسط Nawal Mustafa M.A.)

32) 21 مهارتی که برای همیشه به شما می پردازد (توسط ارمیا Teo / 赵汉昇)

33) آزادی واقعی ...

34) 12 راه برای ایجاد اعتماد با دیگران (توسط جاستین رایت)

35) ویژگی های یک کارمند با استعداد (توسط موسسه مدیریت استعداد)

36) 10 کلید برای ایجاد انگیزه در تیم خود

37) جبر وجدان (نویسنده ولادیمیر لوفور)

38) سه احتمال متمایز آینده (توسط دکتر کلر دبلیو گریوز)

39) اقداماتی برای ایجاد اعتماد به نفس تزلزل ناپذیر (نوشته سورن سامرچیان)

40)


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

ترس

کشور
زبان
-
Mail
دوباره محاسبه کردن
مقدار بحرانی ضریب همبستگی
توزیع عادی ، توسط ویلیام سیلی گوست (دانشجو) r = 0.0318
توزیع عادی ، توسط ویلیام سیلی گوست (دانشجو) r = 0.0318
توزیع غیر عادی ، توسط Spearman r = 0.0013
توزیعغیر
عادی
غیر
عادی
غیر
عادی
طبیعیطبیعیطبیعیطبیعیطبیعی
تمام س questions الات
تمام س questions الات
بزرگترین ترس من این است
بزرگترین ترس من این است
Answer 1-
مثبت ضعیف
0.0548
مثبت ضعیف
0.0285
منفی ضعیف
-0.0173
مثبت ضعیف
0.0940
مثبت ضعیف
0.0358
منفی ضعیف
-0.0156
منفی ضعیف
-0.1560
Answer 2-
مثبت ضعیف
0.0192
منفی ضعیف
-0.0048
منفی ضعیف
-0.0394
مثبت ضعیف
0.0659
مثبت ضعیف
0.0491
مثبت ضعیف
0.0117
منفی ضعیف
-0.0981
Answer 3-
منفی ضعیف
-0.0003
منفی ضعیف
-0.0088
منفی ضعیف
-0.0450
منفی ضعیف
-0.0440
مثبت ضعیف
0.0471
مثبت ضعیف
0.0739
منفی ضعیف
-0.0191
Answer 4-
مثبت ضعیف
0.0429
مثبت ضعیف
0.0271
منفی ضعیف
-0.0230
مثبت ضعیف
0.0182
مثبت ضعیف
0.0351
مثبت ضعیف
0.0239
منفی ضعیف
-0.0995
Answer 5-
مثبت ضعیف
0.0273
مثبت ضعیف
0.1298
مثبت ضعیف
0.0101
مثبت ضعیف
0.0772
منفی ضعیف
-0.0006
منفی ضعیف
-0.0183
منفی ضعیف
-0.1784
Answer 6-
منفی ضعیف
-0.0026
مثبت ضعیف
0.0050
منفی ضعیف
-0.0621
منفی ضعیف
-0.0081
مثبت ضعیف
0.0240
مثبت ضعیف
0.0856
منفی ضعیف
-0.0346
Answer 7-
مثبت ضعیف
0.0105
مثبت ضعیف
0.0339
منفی ضعیف
-0.0661
منفی ضعیف
-0.0304
مثبت ضعیف
0.0517
مثبت ضعیف
0.0686
منفی ضعیف
-0.0515
Answer 8-
مثبت ضعیف
0.0635
مثبت ضعیف
0.0732
منفی ضعیف
-0.0275
مثبت ضعیف
0.0143
مثبت ضعیف
0.0370
مثبت ضعیف
0.0172
منفی ضعیف
-0.1336
Answer 9-
مثبت ضعیف
0.0734
مثبت ضعیف
0.1618
مثبت ضعیف
0.0069
مثبت ضعیف
0.0644
منفی ضعیف
-0.0109
منفی ضعیف
-0.0489
منفی ضعیف
-0.1811
Answer 10-
مثبت ضعیف
0.0764
مثبت ضعیف
0.0679
منفی ضعیف
-0.0139
مثبت ضعیف
0.0290
مثبت ضعیف
0.0338
منفی ضعیف
-0.0123
منفی ضعیف
-0.1342
Answer 11-
مثبت ضعیف
0.0634
مثبت ضعیف
0.0535
منفی ضعیف
-0.0091
مثبت ضعیف
0.0113
مثبت ضعیف
0.0238
مثبت ضعیف
0.0247
منفی ضعیف
-0.1260
Answer 12-
مثبت ضعیف
0.0449
مثبت ضعیف
0.0941
منفی ضعیف
-0.0341
مثبت ضعیف
0.0342
مثبت ضعیف
0.0332
مثبت ضعیف
0.0255
منفی ضعیف
-0.1534
Answer 13-
مثبت ضعیف
0.0691
مثبت ضعیف
0.0966
منفی ضعیف
-0.0393
مثبت ضعیف
0.0295
مثبت ضعیف
0.0417
مثبت ضعیف
0.0148
منفی ضعیف
-0.1626
Answer 14-
مثبت ضعیف
0.0775
مثبت ضعیف
0.0903
منفی ضعیف
-0.0019
منفی ضعیف
-0.0089
مثبت ضعیف
0.0048
مثبت ضعیف
0.0140
منفی ضعیف
-0.1223
Answer 15-
مثبت ضعیف
0.0544
مثبت ضعیف
0.1280
منفی ضعیف
-0.0345
مثبت ضعیف
0.0152
منفی ضعیف
-0.0178
مثبت ضعیف
0.0236
منفی ضعیف
-0.1158
Answer 16-
مثبت ضعیف
0.0703
مثبت ضعیف
0.0262
منفی ضعیف
-0.0371
منفی ضعیف
-0.0377
مثبت ضعیف
0.0697
مثبت ضعیف
0.0204
منفی ضعیف
-0.0788


صادرات به اکسل
این قابلیت در نظرسنجی های VUCA شما در دسترس خواهد بود
خوب

You can not only just create your poll in the تعرفه «V.U.C.A طراح نظرسنجی» (with a unique link and your logo) but also you can earn money by selling its results in the تعرفه «فروشگاه نظرسنجی», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing تعرفه «من SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
والری
مالک محصول SaaS SDTEST®

والری در سال 1993 به عنوان یک معلم اجتماعی-روانشناس صلاحیت یافت و از آن زمان دانش خود را در مدیریت پروژه به کار گرفته است.
والری در سال 2013 مدرک کارشناسی ارشد و صلاحیت مدیر پروژه و برنامه را دریافت کرد. در طول دوره کارشناسی ارشد خود، با Project Roadmap (GPM Deutsche Gesellschaft für Projektmanagement e. V.) و Spiral Dynamics آشنا شد.
والری نویسنده کتاب بررسی عدم قطعیت V.U.C.A است. مفهوم با استفاده از دینامیک مارپیچی و آمار ریاضی در روانشناسی و 38 نظرسنجی بین المللی
این پست دارد 0 نظرات
پاسخ دادن به
پاسخ را لغو کنید
نظر خود را بگذارید
×
شما یک خطا
پیشنهاد نسخه صحیح خود را
ایمیل خود را به عنوان مورد نظر را وارد کنید
ارسال
لغو کردن
Redirect to your region's domain sdtest.us ?
YES
NO
Bot
sdtest
1
سلام! بگذارید از شما بپرسم ، آیا قبلاً با دینامیک مارپیچ آشنا هستید؟