Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) Ettevõtete toimingud seoses personaliga viimasel kuul (jah / ei)

2) Ettevõtete tegevus seoses personali poolt viimase kuu jooksul (fakt%)

3) Kartma

4) Minu riigi suurimad probleemid

5) Milliseid omadusi ja võimeid kasutavad head juhid edukate meeskondade ehitamisel?

6) Google. Meeskonna efektiivsust mõjutavad tegurid

7) Tööotsijate peamised prioriteedid

8) Mis teeb ülemusest suurepärase juhi?

9) Mis teeb inimesed tööl edukaks?

10) Kas olete valmis eemalt töötamise eest vähem palka saama?

11) Kas ageism on olemas?

12) Ageism karjääris

13) Ageism elus

14) Ageismi põhjused

15) Põhjused, miks inimesed loobuvad (autor Anna Vital)

16) Usaldus (#WVS)

17) Oxfordi õnneuuring

18) Psühholoogiline heaolu

19) Kus oleks teie järgmine põnevam võimalus?

20) Mida teete sel nädalal oma vaimse tervise eest hoolitsemiseks?

21) Ma elan oma mineviku, oleviku või tuleviku peale

22) Meritokraatia

23) Tehisintellekt ja tsivilisatsiooni lõpp

24) Miks inimesed viivitavad?

25) Sooline erinevus enesekindluse loomisel (IFD Allensbach)

26) Xing.com kultuuri hindamine

27) Patrick Lencioni "meeskonna viis düsfunktsiooni"

28) Empaatia on ...

29) Mis on IT -spetsialistide jaoks hädavajalik tööpakkumise valimisel?

30) Miks inimesed muutustele vastu seisavad (autor Siobhán McHale)

31) Kuidas oma emotsioone reguleerida? (Autor: Nawal Mustafa M.A.)

32) 21 oskust, mis maksavad teile igavesti (autor Jeremiah Teo / 赵汉昇)

33) Tõeline vabadus on ...

34) 12 viisi teistega usalduse loomiseks (autor Justin Wright)

35) Andeka töötaja omadused (talentide juhtimise instituudi poolt)

36) 10 võtit oma meeskonna motiveerimiseks

37) Südametunnistuse algebra (Vladimir Lefebvre)

38) Kolm erinevat tulevikuvõimalust (autor. dr Clare W. Graves)


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

Kartma

Riik
keel
-
Mail
Ümber arvutama
Kriitiline väärtus korrelatsioonikordaja
Normaalne jaotus, autor William Sealy Gosset (õpilane) r = 0.0331
Normaalne jaotus, autor William Sealy Gosset (õpilane) r = 0.0331
Mitte normaalne jaotus, autor Spearman r = 0.0013
JaotusMitte
normaalne
Mitte
normaalne
Mitte
normaalne
NormaalneNormaalneNormaalneNormaalneNormaalne
Kõik küsimused
Kõik küsimused
Minu suurim hirm on
Minu suurim hirm on
Answer 1-
Nõrk positiivne
0.0563
Nõrk positiivne
0.0317
Nõrk negatiivne
-0.0161
Nõrk positiivne
0.0907
Nõrk positiivne
0.0298
Nõrk negatiivne
-0.0126
Nõrk negatiivne
-0.1537
Answer 2-
Nõrk positiivne
0.0216
Nõrk positiivne
0.0002
Nõrk negatiivne
-0.0458
Nõrk positiivne
0.0654
Nõrk positiivne
0.0445
Nõrk positiivne
0.0124
Nõrk negatiivne
-0.0937
Answer 3-
Nõrk negatiivne
-0.0035
Nõrk negatiivne
-0.0111
Nõrk negatiivne
-0.0421
Nõrk negatiivne
-0.0456
Nõrk positiivne
0.0466
Nõrk positiivne
0.0786
Nõrk negatiivne
-0.0201
Answer 4-
Nõrk positiivne
0.0435
Nõrk positiivne
0.0353
Nõrk negatiivne
-0.0181
Nõrk positiivne
0.0145
Nõrk positiivne
0.0301
Nõrk positiivne
0.0197
Nõrk negatiivne
-0.0979
Answer 5-
Nõrk positiivne
0.0299
Nõrk positiivne
0.1279
Nõrk positiivne
0.0136
Nõrk positiivne
0.0730
Nõrk negatiivne
-0.0007
Nõrk negatiivne
-0.0207
Nõrk negatiivne
-0.1746
Answer 6-
Nõrk negatiivne
-0.0004
Nõrk positiivne
0.0082
Nõrk negatiivne
-0.0629
Nõrk negatiivne
-0.0078
Nõrk positiivne
0.0193
Nõrk positiivne
0.0830
Nõrk negatiivne
-0.0318
Answer 7-
Nõrk positiivne
0.0122
Nõrk positiivne
0.0381
Nõrk negatiivne
-0.0686
Nõrk negatiivne
-0.0242
Nõrk positiivne
0.0471
Nõrk positiivne
0.0636
Nõrk negatiivne
-0.0513
Answer 8-
Nõrk positiivne
0.0698
Nõrk positiivne
0.0849
Nõrk negatiivne
-0.0321
Nõrk positiivne
0.0146
Nõrk positiivne
0.0345
Nõrk positiivne
0.0130
Nõrk negatiivne
-0.1368
Answer 9-
Nõrk positiivne
0.0665
Nõrk positiivne
0.1674
Nõrk positiivne
0.0092
Nõrk positiivne
0.0691
Nõrk negatiivne
-0.0128
Nõrk negatiivne
-0.0528
Nõrk negatiivne
-0.1812
Answer 10-
Nõrk positiivne
0.0778
Nõrk positiivne
0.0755
Nõrk negatiivne
-0.0180
Nõrk positiivne
0.0231
Nõrk positiivne
0.0346
Nõrk negatiivne
-0.0146
Nõrk negatiivne
-0.1298
Answer 11-
Nõrk positiivne
0.0584
Nõrk positiivne
0.0524
Nõrk negatiivne
-0.0096
Nõrk positiivne
0.0081
Nõrk positiivne
0.0199
Nõrk positiivne
0.0318
Nõrk negatiivne
-0.1197
Answer 12-
Nõrk positiivne
0.0380
Nõrk positiivne
0.1042
Nõrk negatiivne
-0.0352
Nõrk positiivne
0.0357
Nõrk positiivne
0.0254
Nõrk positiivne
0.0286
Nõrk negatiivne
-0.1515
Answer 13-
Nõrk positiivne
0.0644
Nõrk positiivne
0.1057
Nõrk negatiivne
-0.0448
Nõrk positiivne
0.0268
Nõrk positiivne
0.0416
Nõrk positiivne
0.0169
Nõrk negatiivne
-0.1600
Answer 14-
Nõrk positiivne
0.0717
Nõrk positiivne
0.1026
Nõrk negatiivne
-0.0006
Nõrk negatiivne
-0.0089
Nõrk negatiivne
-0.0012
Nõrk positiivne
0.0080
Nõrk negatiivne
-0.1168
Answer 15-
Nõrk positiivne
0.0549
Nõrk positiivne
0.1375
Nõrk negatiivne
-0.0420
Nõrk positiivne
0.0178
Nõrk negatiivne
-0.0160
Nõrk positiivne
0.0216
Nõrk negatiivne
-0.1180
Answer 16-
Nõrk positiivne
0.0591
Nõrk positiivne
0.0273
Nõrk negatiivne
-0.0386
Nõrk negatiivne
-0.0399
Nõrk positiivne
0.0653
Nõrk positiivne
0.0282
Nõrk negatiivne
-0.0708


Ekspordiks MS Excel
See funktsionaalsus on saadaval oma VUCA küsitlustes
Okei

You can not only just create your poll in the tariif «V.U.C.A küsitlus disainer» (with a unique link and your logo) but also you can earn money by selling its results in the tariif «Küsitluspoed», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing tariif «Minu SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
Valerii Kosenko
Tooteomanik Saas PET -projekt SDTEST®

Valerii kvalifitseerus 1993. aastal sotsiaalse pedagoogi psühholoogiks ja on sellest ajast alates oma teadmisi projektijuhtimisel rakendanud.
Valerii omandas magistrikraadi ning projekti- ja programmijuhi kvalifikatsiooni 2013. aastal. Magistriprogrammi ajal sai ta tuttavaks projekti teekaardiga (GPM Deutsche Gesellschaft für projektmanagement e. V.) ja spiraaldünaamikaga.
Valerii tegi mitmesuguseid spiraalse dünaamika teste ja kasutas oma teadmisi ja kogemusi SDTesti praeguse versiooni kohandamiseks.
Valerii on V.U.C.A. ebakindluse uurimise autor. Mõiste, mis kasutab spiraalset dünaamikat ja matemaatilist statistikat psühholoogias, enam kui 20 rahvusvahelist küsitlust.
Sellel postitusel on 0 Kommentaarid
Vastama
Tühistage vastus
Jäta oma kommentaar
×
Leiate vea
Saada teateid oma õige versiooni
Sisesta oma e-posti soovitud
Saada
tühistama
Redirect to your region's domain sdtest.us ?
YES
NO
Bot
sdtest
1
Tere! Las ma küsin teilt, kas olete juba spiraalse dünaamikaga tuttav?