libro proba baseada «Spiral Dynamics:
Mastering Values, Leadership, and
Change» (ISBN-13: 978-1405133562)
Patrocinadores

Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) Accións das empresas en relación co persoal no último mes (si / non)

2) Accións de empresas en relación ao persoal no último mes (feito en%)

3) Medos

4) Maiores problemas aos que se enfronta o meu país

5) Que calidades e habilidades usan os bos líderes á hora de construír equipos de éxito?

6) Google. Factores que afectan á eficacia do equipo

7) As principais prioridades dos demandantes de emprego

8) Que fai dun xefe un gran líder?

9) Que fai que a xente teña éxito no traballo?

10) ¿Estás preparado para recibir menos pagos para traballar de forma remota?

11) Existe o idade?

12) Idade na carreira

13) Idade na vida

14) Causas do idade

15) Razóns polas que a xente renuncia (de Anna Vital)

16) Confía (#WVS)

17) Enquisa de felicidade de Oxford

18) Benestar psicolóxico

19) Onde sería a túa próxima oportunidade máis emocionante?

20) Que farás esta semana para coidar a túa saúde mental?

21) Vivo pensando no meu pasado, presente ou futuro

22) Meritocracia

23) Intelixencia artificial e o final da civilización

24) Por que a xente se procrastina?

25) Diferenza de xénero na construción de autoconfianza (IFD Allensbach)

26) Xing.com Avaliación da cultura

27) As cinco disfuncións dun equipo de Patrick Lencioni

28) A empatía é ...

29) Que é esencial para os especialistas en TI na elección dunha oferta de traballo?

30) Por que a xente se resiste ao cambio (de Siobhán McHale)

31) Como regulas as túas emocións? (de Nawal Mustafa M.A.)

32) 21 habilidades que che pagan para sempre (de Jeremiah Teo / 赵汉昇)

33) A liberdade real é ...

34) 12 xeitos de crear confianza cos demais (de Justin Wright)

35) Características dun empregado de talento (por Talent Management Institute)

36) 10 claves para motivar ao teu equipo

37) Álxebra da conciencia (por Vladimir Lefebvre)

38) Tres posibilidades distintas do futuro (pola doutora Clare W. Graves)


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

Medos

país
Lingua
-
Mail
Recalcular
O valor crítico do coeficiente de correlación
Distribución normal, de William Sealy Gosset (estudante) r = 0.0331
Distribución normal, de William Sealy Gosset (estudante) r = 0.0331
Distribución non normal, por Spearman r = 0.0013
DistribuciónNon
normal
Non
normal
Non
normal
NormalNormalNormalNormalNormal
Todas as preguntas
Todas as preguntas
O meu maior medo é
O meu maior medo é
Answer 1-
Débil positivo
0.0563
Débil positivo
0.0317
Débil negativo
-0.0161
Débil positivo
0.0907
Débil positivo
0.0298
Débil negativo
-0.0126
Débil negativo
-0.1537
Answer 2-
Débil positivo
0.0216
Débil positivo
0.0002
Débil negativo
-0.0458
Débil positivo
0.0654
Débil positivo
0.0445
Débil positivo
0.0124
Débil negativo
-0.0937
Answer 3-
Débil negativo
-0.0035
Débil negativo
-0.0111
Débil negativo
-0.0421
Débil negativo
-0.0456
Débil positivo
0.0466
Débil positivo
0.0786
Débil negativo
-0.0201
Answer 4-
Débil positivo
0.0435
Débil positivo
0.0353
Débil negativo
-0.0181
Débil positivo
0.0145
Débil positivo
0.0301
Débil positivo
0.0197
Débil negativo
-0.0979
Answer 5-
Débil positivo
0.0299
Débil positivo
0.1279
Débil positivo
0.0136
Débil positivo
0.0730
Débil negativo
-0.0007
Débil negativo
-0.0207
Débil negativo
-0.1746
Answer 6-
Débil negativo
-0.0004
Débil positivo
0.0082
Débil negativo
-0.0629
Débil negativo
-0.0078
Débil positivo
0.0193
Débil positivo
0.0830
Débil negativo
-0.0318
Answer 7-
Débil positivo
0.0122
Débil positivo
0.0381
Débil negativo
-0.0686
Débil negativo
-0.0242
Débil positivo
0.0471
Débil positivo
0.0636
Débil negativo
-0.0513
Answer 8-
Débil positivo
0.0698
Débil positivo
0.0849
Débil negativo
-0.0321
Débil positivo
0.0146
Débil positivo
0.0345
Débil positivo
0.0130
Débil negativo
-0.1368
Answer 9-
Débil positivo
0.0665
Débil positivo
0.1674
Débil positivo
0.0092
Débil positivo
0.0691
Débil negativo
-0.0128
Débil negativo
-0.0528
Débil negativo
-0.1812
Answer 10-
Débil positivo
0.0778
Débil positivo
0.0755
Débil negativo
-0.0180
Débil positivo
0.0231
Débil positivo
0.0346
Débil negativo
-0.0146
Débil negativo
-0.1298
Answer 11-
Débil positivo
0.0584
Débil positivo
0.0524
Débil negativo
-0.0096
Débil positivo
0.0081
Débil positivo
0.0199
Débil positivo
0.0318
Débil negativo
-0.1197
Answer 12-
Débil positivo
0.0380
Débil positivo
0.1042
Débil negativo
-0.0352
Débil positivo
0.0357
Débil positivo
0.0254
Débil positivo
0.0286
Débil negativo
-0.1515
Answer 13-
Débil positivo
0.0644
Débil positivo
0.1057
Débil negativo
-0.0448
Débil positivo
0.0268
Débil positivo
0.0416
Débil positivo
0.0169
Débil negativo
-0.1600
Answer 14-
Débil positivo
0.0717
Débil positivo
0.1026
Débil negativo
-0.0006
Débil negativo
-0.0089
Débil negativo
-0.0012
Débil positivo
0.0080
Débil negativo
-0.1168
Answer 15-
Débil positivo
0.0549
Débil positivo
0.1375
Débil negativo
-0.0420
Débil positivo
0.0178
Débil negativo
-0.0160
Débil positivo
0.0216
Débil negativo
-0.1180
Answer 16-
Débil positivo
0.0591
Débil positivo
0.0273
Débil negativo
-0.0386
Débil negativo
-0.0399
Débil positivo
0.0653
Débil positivo
0.0282
Débil negativo
-0.0708


Exportación para MS Excel
Esta funcionalidade estará dispoñible nas túas propias enquisas de VUCA
Ok

You can not only just create your poll in the Tarifa «V.U.C.A deseño de investigación» (with a unique link and your logo) but also you can earn money by selling its results in the Tarifa «Tenda de enquisas», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing Tarifa «Meu SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
Valerii Kosenko
Proxecto de propietario de produtos Saas Pet Project Sdtest®

Valerii foi cualificado como pedagogo social-psicólogo en 1993 e desde entón aplicou os seus coñecementos na xestión de proxectos.
Valerii obtivo un máster e a cualificación do xestor de proxectos e do programa en 2013. Durante o seu programa de máster, familiarizouse coa folla de ruta do proxecto (GPM Deutsche Gesellschaft Für ProjektManagement E. V.) e dinámica espiral.
Valerii realizou varias probas de dinámica en espiral e utilizou os seus coñecementos e experiencia para adaptar a versión actual de SDTest.
Valerii é o autor de explorar a incerteza do V.U.C.A. Concepto empregando dinámicas en espiral e estatísticas matemáticas en psicoloxía, máis de 20 enquisas internacionais.
Esta publicación ten 0 Comentarios
Resposta a
Cancelar unha resposta
Deixa o teu comentario
×
Atopa un erro
Propoñer a súa CORRECTO VERSIÓN
Introduza o seu correo electrónico como desexado
Enviar
cancelar
Redirect to your region's domain sdtest.us ?
YES
NO
Bot
sdtest
1
Ola alí! Déixame preguntarche, xa estás familiarizado coa dinámica en espiral?