test na osnovu knjiga «Spiral Dynamics:
Mastering Values, Leadership, and
Change» (ISBN-13: 978-1405133562)
Sponzori

Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) Radnje preduzeća u odnosu na osoblje u poslednjem mesecu (da / ne)

2) Radnje preduzeća u odnosu na osoblje u poslednjem mesecu (činjenica u%)

3) Strahovi

4) Najveći problemi s kojima se suočava moja zemlja

5) Koje kvalitete i sposobnosti koriste dobri lideri kada izgradite uspješne timove?

6) Google. Čimbenici koji utječu na timušku efikasnost

7) Glavni prioriteti tražitelja posla

8) Šta šefe čini sjajnim vođom?

9) Šta ljudi čini uspješnim na poslu?

10) Jeste li spremni dobiti manje plaćanja za rad na daljinu?

11) Da li ageizam postoji?

12) Ageizam u karijeri

13) Ageizam u životu

14) Uzroci ageizma

15) Razlozi zbog kojih se ljudi odustaju (od strane Ane Vital)

16) Povjerenje (#WVS)

17) Anketa o sreći Oxford

18) Psihološka blagostanja

19) Gdje bi bila vaša sljedeća najuzbudljivija prilika?

20) Šta ćete raditi ove sedmice da biste pazili na vaše mentalno zdravlje?

21) Živim razmišljajući o svojoj prošlosti, sadašnjosti ili budućnosti

22) Meritokracija

23) Umjetna inteligencija i kraj civilizacije

24) Zašto ljudi oduzimaju?

25) Rodna razlika u izgradnji samopouzdanja (IFD Allensbach)

26) Xing.com Procjena kulture

27) Patrick Lencioni's "Pet disfunkcije tima"

28) Empatija je ...

29) Šta je neophodno za IT stručnjake u odabiru ponude za posao?

30) Zašto se ljudi odupiruju promjenama (od strane Siobhán Mchale)

31) Kako regulišete svoje emocije? (Autor NAWAL MUSTAFA M.A.)

32) 21 vještine koje vam plaćaju zauvijek (od Jeremiah Teo / 赵汉昇)

33) Prava sloboda je ...

34) 12 načina za izgradnju povjerenja sa drugima (Justin Wright)

35) Karakteristike talentovanog zaposlenika (od strane Instituta za upravljanje talentima)

36) 10 tipki za motiviranje vašeg tima

37) Algebra savesti (Vladimir Lefevr)

38) Tri različite mogućnosti budućnosti (dr. Clare W. Graves)


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

Strahovi

zemlja
jezik
-
Mail
Preračunati
Kritične vrijednosti koeficijenta korelacije
Normalna distribucija, William Sealy Gosset (student) r = 0.0331
Normalna distribucija, William Sealy Gosset (student) r = 0.0331
Non Normalna distribucija, od Spearman r = 0.0013
DistribucijaNe
normalno
Ne
normalno
Ne
normalno
NormalanNormalanNormalanNormalanNormalan
Sva pitanja
Sva pitanja
Moj najveći strah je
Moj najveći strah je
Answer 1-
Slabo pozitivno
0.0563
Slabo pozitivno
0.0317
Slab negativan
-0.0161
Slabo pozitivno
0.0907
Slabo pozitivno
0.0298
Slab negativan
-0.0126
Slab negativan
-0.1537
Answer 2-
Slabo pozitivno
0.0216
Slabo pozitivno
0.0002
Slab negativan
-0.0458
Slabo pozitivno
0.0654
Slabo pozitivno
0.0445
Slabo pozitivno
0.0124
Slab negativan
-0.0937
Answer 3-
Slab negativan
-0.0035
Slab negativan
-0.0111
Slab negativan
-0.0421
Slab negativan
-0.0456
Slabo pozitivno
0.0466
Slabo pozitivno
0.0786
Slab negativan
-0.0201
Answer 4-
Slabo pozitivno
0.0435
Slabo pozitivno
0.0353
Slab negativan
-0.0181
Slabo pozitivno
0.0145
Slabo pozitivno
0.0301
Slabo pozitivno
0.0197
Slab negativan
-0.0979
Answer 5-
Slabo pozitivno
0.0299
Slabo pozitivno
0.1279
Slabo pozitivno
0.0136
Slabo pozitivno
0.0730
Slab negativan
-0.0007
Slab negativan
-0.0207
Slab negativan
-0.1746
Answer 6-
Slab negativan
-0.0004
Slabo pozitivno
0.0082
Slab negativan
-0.0629
Slab negativan
-0.0078
Slabo pozitivno
0.0193
Slabo pozitivno
0.0830
Slab negativan
-0.0318
Answer 7-
Slabo pozitivno
0.0122
Slabo pozitivno
0.0381
Slab negativan
-0.0686
Slab negativan
-0.0242
Slabo pozitivno
0.0471
Slabo pozitivno
0.0636
Slab negativan
-0.0513
Answer 8-
Slabo pozitivno
0.0698
Slabo pozitivno
0.0849
Slab negativan
-0.0321
Slabo pozitivno
0.0146
Slabo pozitivno
0.0345
Slabo pozitivno
0.0130
Slab negativan
-0.1368
Answer 9-
Slabo pozitivno
0.0665
Slabo pozitivno
0.1674
Slabo pozitivno
0.0092
Slabo pozitivno
0.0691
Slab negativan
-0.0128
Slab negativan
-0.0528
Slab negativan
-0.1812
Answer 10-
Slabo pozitivno
0.0778
Slabo pozitivno
0.0755
Slab negativan
-0.0180
Slabo pozitivno
0.0231
Slabo pozitivno
0.0346
Slab negativan
-0.0146
Slab negativan
-0.1298
Answer 11-
Slabo pozitivno
0.0584
Slabo pozitivno
0.0524
Slab negativan
-0.0096
Slabo pozitivno
0.0081
Slabo pozitivno
0.0199
Slabo pozitivno
0.0318
Slab negativan
-0.1197
Answer 12-
Slabo pozitivno
0.0380
Slabo pozitivno
0.1042
Slab negativan
-0.0352
Slabo pozitivno
0.0357
Slabo pozitivno
0.0254
Slabo pozitivno
0.0286
Slab negativan
-0.1515
Answer 13-
Slabo pozitivno
0.0644
Slabo pozitivno
0.1057
Slab negativan
-0.0448
Slabo pozitivno
0.0268
Slabo pozitivno
0.0416
Slabo pozitivno
0.0169
Slab negativan
-0.1600
Answer 14-
Slabo pozitivno
0.0717
Slabo pozitivno
0.1026
Slab negativan
-0.0006
Slab negativan
-0.0089
Slab negativan
-0.0012
Slabo pozitivno
0.0080
Slab negativan
-0.1168
Answer 15-
Slabo pozitivno
0.0549
Slabo pozitivno
0.1375
Slab negativan
-0.0420
Slabo pozitivno
0.0178
Slab negativan
-0.0160
Slabo pozitivno
0.0216
Slab negativan
-0.1180
Answer 16-
Slabo pozitivno
0.0591
Slabo pozitivno
0.0273
Slab negativan
-0.0386
Slab negativan
-0.0399
Slabo pozitivno
0.0653
Slabo pozitivno
0.0282
Slab negativan
-0.0708


Izvoz u MS Excel
Ova funkcionalnost bit će dostupna u vlastitim VUCA anketama
Uredu

You can not only just create your poll in the tarifa «V.U.C.A anketa dizajner» (with a unique link and your logo) but also you can earn money by selling its results in the tarifa «Anketa», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing tarifa «Moje SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
Valerii Kosenko
Vlasnik proizvoda Saas Pet Project SDTEST®

Valerii je bio kvalificiran kao socijalni pedagogi psiholog 1993. godine i od tada je primijenio svoje znanje u upravljanju projektima.
Valerii je stekao magisterij i kvalifikaciju projekta i programskih menadžera u 2013. tokom svog master programa postao je upoznat sa projektnim mapama (GPM Deutsche Gesellschaft für projektmanagement e. V.) i spiralna dinamika.
Valerii je preuzeo razne testove spiralne dinamike i koristio svoje znanje i iskustvo kako bi prilagodili trenutnu verziju SDTEST-a.
Valerii je autor istraživanja neizvjesnosti V..c.a. Koncept koristeći spiralnu dinamiku i matematičku statistiku u psihologiji, više od 20 međunarodnih anketa.
Ovaj post ima 0 Komentari
Odgovoriti na
Otkaži odgovor
Ostavite komentar
×
Nađete GREŠKA
PREDLA VAŠA ispravnu verziju
Unesite svoju e-mail po želji
Pošalji
otkazati
Redirect to your region's domain sdtest.us ?
YES
NO
Bot
sdtest
1
Bok tamo! Da vas pitam, da li ste već upoznali sa spiralnom dinamikom?