книга тест, основаващ «Spiral Dynamics:
Mastering Values, Leadership, and
Change» (ISBN-13: 978-1405133562)
Спонсори

Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) Действия на компании във връзка с персонала през последния месец (да / не)

2) Действия на дружествата във връзка с персонала през последния месец (факт в%)

3) Страховете

4) Най -големите проблеми пред моята страна

5) Какви качества и способности използват добрите лидери при изграждането на успешни екипи?

6) Google. Фактори, които влияят на ефективността на екипа

7) Основните приоритети на търсещите работа

8) Какво прави шефа страхотен лидер?

9) Какво прави хората успешни на работа?

10) Готови ли сте да получавате по -малко заплащане, за да работите дистанционно?

11) Съществува ли егеизмът?

12) Възрастът в кариерата

13) Агеизъм в живота

14) Причини за възрастта

15) Причини, поради които хората се отказват (от Анна жизненоважно)

16) ДОВЕРИЕ (#WVS)

17) Оксфордско проучване за щастие

18) Психологическо благополучие

19) Къде ще бъде следващата ви най -вълнуваща възможност?

20) Какво ще направите тази седмица, за да се грижите за психичното си здраве?

21) Живея, мисля за миналото, настоящето или бъдещето си

22) Меритокрация

23) Изкуствен интелект и края на цивилизацията

24) Защо хората отлагат?

25) Разлика между половете в изграждането на самочувствие (IFD Allensbach)

26) Xing.com Оценка на културата

27) „Петте дисфункции на екип“ на Патрик Ленсиони “

28) Емпатията е ...

29) Какво е от съществено значение за ИТ специалистите при избора на оферта за работа?

30) Защо хората се съпротивляват на промяната (от Siobhán McHale)

31) Как регулирате емоциите си? (От Nawal Mustafa M.A.)

32) 21 умения, които ви плащат завинаги (от Йеремия Тео / 赵汉昇)

33) Истинската свобода е ...

34) 12 начина за изграждане на доверие с другите (от Джъстин Райт)

35) Характеристики на талантлив служител (от Института за управление на таланти)

36) 10 ключа за мотивиране на вашия екип

37) Алгебра на съвестта (от Владимир Льофевр)

38) Три различни възможности на бъдещето (от д-р Клеър У. Грейвс)


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

Страховете

Страна
език
-
Mail
Преизчислете
Критична стойност на коефициента на корелация
Нормално разпространение, от Уилям Сили Госет (студент) r = 0.0331
Нормално разпространение, от Уилям Сили Госет (студент) r = 0.0331
Не нормално разпределение, от Spearman r = 0.0013
РазпределениеНе
нормално
Не
нормално
Не
нормално
НормалноНормалноНормалноНормалноНормално
Всички въпроси
Всички въпроси
Най-големият ми страх е
Най-големият ми страх е
Answer 1-
Слаба положителна
0.0563
Слаба положителна
0.0317
Слаб отрицателен
-0.0161
Слаба положителна
0.0907
Слаба положителна
0.0298
Слаб отрицателен
-0.0126
Слаб отрицателен
-0.1537
Answer 2-
Слаба положителна
0.0216
Слаба положителна
0.0002
Слаб отрицателен
-0.0458
Слаба положителна
0.0654
Слаба положителна
0.0445
Слаба положителна
0.0124
Слаб отрицателен
-0.0937
Answer 3-
Слаб отрицателен
-0.0035
Слаб отрицателен
-0.0111
Слаб отрицателен
-0.0421
Слаб отрицателен
-0.0456
Слаба положителна
0.0466
Слаба положителна
0.0786
Слаб отрицателен
-0.0201
Answer 4-
Слаба положителна
0.0435
Слаба положителна
0.0353
Слаб отрицателен
-0.0181
Слаба положителна
0.0145
Слаба положителна
0.0301
Слаба положителна
0.0197
Слаб отрицателен
-0.0979
Answer 5-
Слаба положителна
0.0299
Слаба положителна
0.1279
Слаба положителна
0.0136
Слаба положителна
0.0730
Слаб отрицателен
-0.0007
Слаб отрицателен
-0.0207
Слаб отрицателен
-0.1746
Answer 6-
Слаб отрицателен
-0.0004
Слаба положителна
0.0082
Слаб отрицателен
-0.0629
Слаб отрицателен
-0.0078
Слаба положителна
0.0193
Слаба положителна
0.0830
Слаб отрицателен
-0.0318
Answer 7-
Слаба положителна
0.0122
Слаба положителна
0.0381
Слаб отрицателен
-0.0686
Слаб отрицателен
-0.0242
Слаба положителна
0.0471
Слаба положителна
0.0636
Слаб отрицателен
-0.0513
Answer 8-
Слаба положителна
0.0698
Слаба положителна
0.0849
Слаб отрицателен
-0.0321
Слаба положителна
0.0146
Слаба положителна
0.0345
Слаба положителна
0.0130
Слаб отрицателен
-0.1368
Answer 9-
Слаба положителна
0.0665
Слаба положителна
0.1674
Слаба положителна
0.0092
Слаба положителна
0.0691
Слаб отрицателен
-0.0128
Слаб отрицателен
-0.0528
Слаб отрицателен
-0.1812
Answer 10-
Слаба положителна
0.0778
Слаба положителна
0.0755
Слаб отрицателен
-0.0180
Слаба положителна
0.0231
Слаба положителна
0.0346
Слаб отрицателен
-0.0146
Слаб отрицателен
-0.1298
Answer 11-
Слаба положителна
0.0584
Слаба положителна
0.0524
Слаб отрицателен
-0.0096
Слаба положителна
0.0081
Слаба положителна
0.0199
Слаба положителна
0.0318
Слаб отрицателен
-0.1197
Answer 12-
Слаба положителна
0.0380
Слаба положителна
0.1042
Слаб отрицателен
-0.0352
Слаба положителна
0.0357
Слаба положителна
0.0254
Слаба положителна
0.0286
Слаб отрицателен
-0.1515
Answer 13-
Слаба положителна
0.0644
Слаба положителна
0.1057
Слаб отрицателен
-0.0448
Слаба положителна
0.0268
Слаба положителна
0.0416
Слаба положителна
0.0169
Слаб отрицателен
-0.1600
Answer 14-
Слаба положителна
0.0717
Слаба положителна
0.1026
Слаб отрицателен
-0.0006
Слаб отрицателен
-0.0089
Слаб отрицателен
-0.0012
Слаба положителна
0.0080
Слаб отрицателен
-0.1168
Answer 15-
Слаба положителна
0.0549
Слаба положителна
0.1375
Слаб отрицателен
-0.0420
Слаба положителна
0.0178
Слаб отрицателен
-0.0160
Слаба положителна
0.0216
Слаб отрицателен
-0.1180
Answer 16-
Слаба положителна
0.0591
Слаба положителна
0.0273
Слаб отрицателен
-0.0386
Слаб отрицателен
-0.0399
Слаба положителна
0.0653
Слаба положителна
0.0282
Слаб отрицателен
-0.0708


Експорт към MS Excel
Тази функционалност ще бъде достъпна в вашите собствени анкети VUCA
Добре

You can not only just create your poll in the тарифа «V.U.C.A анкета дизайнер» (with a unique link and your logo) but also you can earn money by selling its results in the тарифа «Магазин за анкети», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing тарифа «Моят SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
Valerii Kosenko
Собственик на продукта SaaS PET Project Sdtest®

Valerii беше квалифициран като социален педагог-психолог през 1993 г. и оттогава прилага знанията си в управлението на проекти.
Valerii получи магистърска степен и квалификация за проект и програмен мениджър през 2013 г. По време на магистърската си програма той се запознава с пътната карта на проекта (GPM Deutsche Gesellschaft Für ProjektManagement E. V.) и спиралната динамика.
Valerii взе различни тестове за динамика на спиралата и използва своите знания и опит, за да адаптира текущата версия на SdTest.
Valerii е автор на изследването на несигурността на V.U.C.A. Концепция, използваща динамика на спирала и математическа статистика в психологията, повече от 20 международни анкети.
Тази публикация има 0 Коментари
Отговаряте на
Отменете отговор
Оставете коментара си
×
Намерите грешка
ПРЕДЛАГАМЕ ВИ правилната версия
Въведете вашия имейл по желание
Изпрати
Отказ
Redirect to your region's domain sdtest.us ?
YES
NO
Bot
sdtest
1
Здрасти! Позволете ми да ви попитам, вече ли сте запознати със спиралната динамика?